skip to main content

SciTech ConnectSciTech Connect

Title: An oil-in-water self-assembly synthesis, characterization and photocatalytic properties of nano Ag@AgCl surface-sensitized K{sub 2}Ti{sub 4}O{sub 9}

Highlights: • The plasmatic Ag@AgCl surface-sensitized K{sub 2}Ti{sub 4}O{sub 9} composite photocatalysts. • Ag@AgCl greatly increased visible light absorption for K{sub 2}Ti{sub 4}O{sub 9}. • The photocatalysts exhibited enhanced photocatalytic dye degradation. - Abstract: Nano-sized plasmonic Ag@AgCl surface-sensitized K{sub 2}Ti{sub 4}O{sub 9} composite photocatalysts (hereafter designated as Ag@AgCl/K{sub 2}Ti{sub 4}O{sub 9}) was synthesized via a facile oil-in-water self-assembly method. The photocatalytic activity of the prepared materials for RhB (Rhodamine B) degradation was examined under visible light irradiation. The results reveal that the size of Ag@AgCl, which evenly dispersed on the surface of K{sub 2}Ti{sub 4}O{sub 9}, distributes about 20–50 nm. The UV–vis diffuse reflectance spectra indicate that Ag@AgCl/K{sub 2}Ti{sub 4}O{sub 9} samples have a significantly enhanced optical absorption in 380–700 nm. The photocatalytic activities of the Ag@AgCl/K{sub 2}Ti{sub 4}O{sub 9} samples increase first and then decrease with increasing amount of loading Ag@AgCl and the Ag@AgCl(20 wt.%)/K{sub 2}Ti{sub 4}O{sub 9} sample exhibits the best photocatalytic activity and 94.47% RhB was degraded after irradiation for 2 h. Additionally, studies performed using radical scavengers indicated that O{sub 2}·{sup −} and Cl{sup 0} acted as the main reactive species. The electronic interaction was systematically studied and confirmed by the photo-electrochemical measurements.
Authors:
; ; ; ;
Publication Date:
OSTI Identifier:
22420683
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 60; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ABSORPTION SPECTRA; COMPOSITE MATERIALS; ELECTROCHEMISTRY; IRRADIATION; LOADING; NANOSTRUCTURES; PHOTOCATALYSIS; POTASSIUM COMPOUNDS; SILVER; SILVER CHLORIDES; SURFACES; SYNTHESIS; TITANATES; VISIBLE RADIATION; WATER; X-RAY DIFFRACTION