skip to main content

Title: Photoluminescence and thermal stability of yellow-emitting Na{sub 2}Ba{sub 2}Si{sub 2}O{sub 7}:Sm{sup 3+} phosphor for light-emitting diodes

Highlights: • Na{sub 2}Ba{sub 2}Si{sub 2}O{sub 7}:Sm{sup 3+} phosphors are obtained via a solid-state reaction method. • Excitation at 402 nm, the yellow color purity is close to 100%. • The mechanism of concentration quenching is dipole–dipole interaction. • The temperature-dependent luminescence property exceed that of YAG:Ce{sup 3+}. - Abstract: A series of yellow-emitting Na{sub 2}(Ba{sub 2−x}Sm{sub x})Si{sub 2}O{sub 7} phosphors have been prepared via solid-state reaction technique. X-ray diffraction (XRD), photoluminescence (PL) spectra, temperature-dependent luminescence property, concentration quenching mechanism and luminescence lifetime are applied to characterize the obtained samples. Under 402 nm near ultraviolent excitation, the samples emit yellow light and the color purity is close to 100%. The critical quenching concentration of Sm{sup 3+} in the Na{sub 2}Ba{sub 2}Si{sub 2}O{sub 7} host is about 3.6 mol% and corresponding quenching behavior is ascribed to be electric dipole–dipole interaction. Furthermore, the phosphor has good thermal stability property, superior to the commercial yellow Y{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+} phosphor and the activation energy for thermal quenching is calculated as 0.18 eV.
Authors:
; ;
Publication Date:
OSTI Identifier:
22420667
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 60; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ALUMINATES; BARIUM SILICATES; CERIUM IONS; COLOR; CONCENTRATION RATIO; ELECTRIC DIPOLES; EMISSION SPECTRA; EXCITATION; LIFETIME; LIGHT EMITTING DIODES; PHASE STABILITY; PHOSPHORS; PHOTOLUMINESCENCE; SAMARIUM IONS; SODIUM COMPOUNDS; TEMPERATURE DEPENDENCE; VISIBLE RADIATION; X-RAY DIFFRACTION; YTTRIUM COMPOUNDS