skip to main content

SciTech ConnectSciTech Connect

Title: A dual strategy for improving lithium storage performance, a case of Fe{sub 2}O{sub 3}

Graphical abstract: The α-Fe{sub 2}O{sub 3} nanoellipse with180–230 nm (edge length) and 140–170 nm (edge width) has been synthesize and tested as anode material for LIBs. The α-Fe{sub 2}O{sub 3} nanoellipse electrode with sodium alginate (SA) binder exhibits greatly enhanced performance for lithium storage. - Highlights: • α-Fe{sub 2}O{sub 3} nanoellipses were fabricated by a simple hydrothermal method with glycine. • The elliptical α-Fe{sub 2}O{sub 3}-SA electrode exhibits enhanced lithium storage performance. • The reason for the enhanced performance of elliptical α-Fe{sub 2}O{sub 3}-SA was investigated. - Abstract: In this paper, we developed a dual strategy, the nanostructure engineering of active material and the proper choice of binder, to achieve excellent lithium storage performance of transition metal oxides. α-Fe{sub 2}O{sub 3} nanoellipses with a mean size of 180–230 nm (edge length) and 140–170 nm (edge width) were fabricated by a simple hydrothermal method in the presence of glycine. When tested as anode material for lithium ion batteries (LIBs), the α-Fe{sub 2}O{sub 3} nanoellipse electrode with sodium alginate (SA) binder exhibits greatly enhanced performance for lithium storage. The capacity could be retained as high as 1164 mA h g{sup −1} at a current density of 100 mA g{sup −1} for overmore » 60 cycles. Even cycled at high current densities of 2000–5000 mA g{sup −1}, high capacities of 443–628 mA h g{sup −1} can be achieved, whereas the electrode with the conventional poly(vinylidene fluoride) (PVDF) binder suffers from rapid capacity decay under the same test conditions.« less
Authors:
; ; ;
Publication Date:
OSTI Identifier:
22420616
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 59; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ALGINATES; ANODES; CURRENT DENSITY; FERRITES; FLUORINATED ALIPHATIC HYDROCARBONS; GLYCINE; HYDROTHERMAL SYNTHESIS; IRON OXIDES; LITHIUM; LITHIUM ION BATTERIES; LITHIUM IONS; NANOSTRUCTURES; POLYVINYLS; SODIUM; SODIUM COMPOUNDS