skip to main content

SciTech ConnectSciTech Connect

Title: A mesoporous carbon–sulfur composite as cathode material for high rate lithium sulfur batteries

Highlights: • CMK-3 mesoporous carbon was synthesized as conducting reservoir for housing sulfur. • Sulfur/CMK-3 composites were prepared by two-stage thermal treatment. • The composite at 300 °C for 20 h shows improved electrochemical properties. - Abstract: Sulfur composite was prepared by encapsulating sulfur into CMK-3 mesoporous carbon with different heating times and then used as the cathode material for lithium sulfur batteries. Thermal treatment at 300 °C plays an important role in the sulfur encapsulation process. With 20 h of heating time, a portion of sulfur remained on the surface of carbon, whereas with 60 h of heating time, sulfur is confined deeply in the small pores of carbon that cannot be fully exploited in the redox reaction, thus causing low capacity. The S/CMK-3 composite with thermal treatment for 40 h at 300 °C contained 51.3 wt.% sulfur and delivered a high initial capacity of 1375 mA h g{sup −1} at 0.1 C. Moreover, it showed good capacity retention of 704 mA h g{sup −1} at 0.1 C and 578 mA h g{sup −1} at 2 C even after 100 cycles, which proves its potential as a cathode material for high capability lithium sulfur batteries.
Authors:
; ;  [1] ; ;  [2] ;  [2] ;  [1] ;  [3]
  1. Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of)
  2. Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of)
  3. (Korea, Republic of)
Publication Date:
OSTI Identifier:
22420593
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 58; Conference: IFFM2013: International forum on functional materials, Jeju City (Korea, Republic of), 27-29 Jun 2013; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CAPACITY; CARBON; CATHODES; ELECTROCHEMISTRY; ENCAPSULATION; ENERGY STORAGE; HEAT TREATMENTS; HEATING; LITHIUM-SULFUR BATTERIES; NANOSTRUCTURES; POTENTIALS; REDOX REACTIONS; RETENTION; SULFUR; SURFACES; SYNTHESIS