skip to main content

SciTech ConnectSciTech Connect

Title: Diffusion length and resistivity distribution characteristics of silicon wafer by photoluminescence

Highlights: • Analytical photoluminescence efficiency calculation and PL intensity ratio method are developed. • Wafer resistivity and diffusion length characteristics are investigated by PL intensity ratio. • PL intensity is well correlated with resistivity, diffusion length or defect density on wafer measurement. - Abstract: Photoluminescence is a convenient, contactless method to characterize semiconductors. Its use for room-temperature silicon characterization has only recently been implemented. We have developed the PL efficiency theory as a function of substrate doping densities, bulk trap density, photon flux density, and reflectance and compared it with experimental data initially for bulk Si wafers. New developed PL intensity ratio method is able to predict the silicon wafer properties, such as doping densities, minority carrier diffusion length and bulk trap density.
Authors:
; ;
Publication Date:
OSTI Identifier:
22420586
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 58; Conference: IFFM2013: International forum on functional materials, Jeju City (Korea, Republic of), 27-29 Jun 2013; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; COMPARATIVE EVALUATIONS; DENSITY; DIFFUSION; DIFFUSION LENGTH; EFFICIENCY; ELECTRICAL PROPERTIES; FLUX DENSITY; OPTICAL PROPERTIES; PHOTOLUMINESCENCE; PHOTONS; SEMICONDUCTOR MATERIALS; SILICON; SUBSTRATES; TEMPERATURE RANGE 0273-0400 K; TRAPS