skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Monophasic zircon-type tetragonal Eu{sub 1−x}Bi{sub x}VO{sub 4} solid-solution: synthesis, characterization, and optical properties

Journal Article · · Materials Research Bulletin
;  [1];  [2]; ; ;  [1];  [1]
  1. School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)
  2. Shenzhen Water (Group) Co. Ltd., Shenzhen 518000 (China)

Highlights: • Complete Eu{sub 1−x}Bi{sub x}VO{sub 4} with zircon-type structure was successfully synthesized. • The band gap of the samples could be adjusted and controlled by bismuth content. • Eu{sub 1−x}Bi{sub x}VO{sub 4} show strong red emission under both near UV and visible-light excitation. - Abstract: By combining the methods of co-precipitation and hydrothermal synthesis methods, the complete solid-solution of Eu{sub 1−x}Bi{sub x}VO{sub 4} with monophasic zircon-type structure was successfully synthesized. The zircon-type structure was determined by X-ray diffractometer and Raman scattering, and the optical properties were characterized by ultraviolet-visible diffuse reflectance and photoluminescence spectrophotometer. The results indicate that the band gap of Eu{sub 1−x}Bi{sub x}VO{sub 4} could be adjusted and controlled by bismuth content in the range of x = 0–0.9. Meanwhile, the Eu{sub 1−x}Bi{sub x}VO{sub 4} solid-solution phosphors show strong red light emission was shown in 619 nm under both near UV-light and visible-light excitation. Notably, the emission intensity of Eu{sub 1−x}Bi{sub x}VO{sub 4} (x = 0.4) is the strongest in all samples.

OSTI ID:
22420568
Journal Information:
Materials Research Bulletin, Vol. 57; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English