skip to main content

Title: Pressure effect on elastic anisotropy of crystals from ab initio simulations: The case of silicate garnets

A general methodology has been devised and implemented into the solid-state ab initio quantum-mechanical CRYSTAL program for studying the evolution under geophysical pressure of the elastic anisotropy of crystalline materials. This scheme, which fully exploits both translational and point symmetry of the crystal, is developed within the formal frame of one-electron Hamiltonians and atom-centered basis functions. Six silicate garnet end-members, among the most important rock-forming minerals of the Earth's mantle, are considered, whose elastic anisotropy is fully characterized under high hydrostatic compressions, up to 60 GPa. The pressure dependence of azimuthal anisotropy and shear-wave birefringence of seismic wave velocities for these minerals are accurately simulated and compared with available single-crystal measurements.
Authors:
; ;  [1] ;  [2]
  1. Dipartimento di Chimica and Centre of Excellence NIS (Nanostructured Interfaces and Surfaces), Università di Torino, via Giuria 5, IT-10125 Torino (Italy)
  2. Institut für Elektrochemie, Universität Ulm, D-89081 Ulm (Germany)
Publication Date:
OSTI Identifier:
22420127
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 23; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANISOTROPY; ATOMS; COMPRESSION; ELECTRONS; GARNETS; HAMILTONIANS; MONOCRYSTALS; PRESSURE DEPENDENCE; SEISMIC WAVES; SILICATES; SIMULATION; SOLIDS