skip to main content

SciTech ConnectSciTech Connect

Title: On energetic prerequisites of attracting electrons

The internal reorganization energy and the zero-point vibrational energy (ZPE) of fractionally charged molecules embedded in molecular materials are discussed. The theory for isolated open quantum systems is taken as the starting point. It is shown that for isolated molecules the internal reorganization-energy function and its slope, i.e., the chemical potential of an open molecular system are monotonically decreasing functions with respect to increasing amount of negative excess charge (q) in the range of q = [0, 1]. Calculations of the ZPE for fractionally charged molecules show that the ZPE may have a minimum for fractional occupation. The calculations show that the internal reorganization energy and changes in the ZPE are of the same order of magnitude with different behavior as a function of the excess charge. The sum of the contributions might favor molecules with fractional occupation of the molecular units and partial delocalization of the excess electrons in solid-state materials also when considering Coulomb repulsion between the excess electrons. The fractional electrons are then coherently distributed on many molecules of the solid-state material forming a condensate of attracting electrons, which is crucial for the superconducting state.
Authors:
 [1]
  1. Department of Chemistry, POB 55 (A.I. Virtanens plats 1), FIN-00014 University of Helsinki (Finland)
Publication Date:
OSTI Identifier:
22420124
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 23; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; COULOMB FIELD; ELECTRONS; FUNCTIONS; MOLECULES; SOLIDS