skip to main content

Title: Measurement and understanding of single-molecule break junction rectification caused by asymmetric contacts

The contact effects of single-molecule break junctions on rectification behaviors were experimentally explored by a systematic control of anchoring groups of 1,4-disubstituted benzene molecular junctions. Single-molecule conductance and I-V characteristic measurements reveal a strong correlation between rectifying effects and the asymmetry in contacts. Analysis using energy band models and I-V calculations suggested that the rectification behavior is mainly caused by asymmetric coupling strengths at the two contact interfaces. Fitting of the rectification ratio by a modified Simmons model we developed suggests asymmetry in potential drop across the asymmetric anchoring groups as the mechanism of rectifying I-V behavior. This study provides direct experimental evidence and sheds light on the mechanisms of rectification behavior induced simply by contact asymmetry, which serves as an aid to interpret future single-molecule electronic behavior involved with asymmetric contact conformation.
Authors:
; ; ;  [1]
  1. Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, Georgia 30602 (United States)
Publication Date:
OSTI Identifier:
22420006
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 141; Journal Issue: 5; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ASYMMETRY; BENZENE; CONTROL; ELECTRIC CONDUCTIVITY; INTERFACES; MOLECULES