skip to main content

SciTech ConnectSciTech Connect

Title: One- and two-photon absorption in solution: The effects of a passive auxiliary beam

The efficiencies of one- and two-photon absorption by chromophores in solution may be significantly modified by a sufficiently intense beam of off-resonant light. A molecular analysis based on quantum electrodynamics (QED) fully accounts for this phenomenon of laser-modified absorption. A time-dependent perturbation-theory treatment describes the process in terms of stimulated forward Rayleigh-scattering of the auxiliary beam occurring simultaneously with the absorption interaction(s). Our formulation accommodates media modifications to the basic character of light-matter interactions, taking into account the refractive and dispersive properties of a solution-phase environment. This introduces the bulk refractive index of the solvent directly into the QED framework. The measurable electronic response of molecules freely rotating in solution is defined by an average of all orientations. We explicitly derive fixed-orientation and rotationally averaged calculations for the Fermi-rule rate of laser-modified one- and two-photon absorption. For a given beam polarization geometry, the solution-phase molecular response is expressible as a set of natural invariant scalars. These results reveal details of the dependence on the beam polarisations and on the rotationally averaged molecular response: we illustrate the breadth of variation available via geometric manipulation of beam polarization, and raise new possibilities for quantum weak measurements of laser states.
Authors:
;  [1]
  1. School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ (United Kingdom)
Publication Date:
OSTI Identifier:
22419896
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 141; Journal Issue: 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ABSORPTION; EFFICIENCY; INTERACTIONS; LASERS; MOLECULES; PHOTONS; POLARIZATION; QUANTUM ELECTRODYNAMICS; RAYLEIGH SCATTERING; REFRACTIVE INDEX; SOLUTIONS; SOLVENTS; TIME DEPENDENCE