skip to main content

Title: A perturbative formalism for electronic transitions through conical intersections in a fully quadratic vibronic model

We consider a fully quadratic vibronic model Hamiltonian for studying photoinduced electronic transitions through conical intersections. Using a second order perturbative approximation for diabatic couplings, we derive an analytical expression for the time evolution of electronic populations at a given temperature. This formalism extends upon a previously developed perturbative technique for a linear vibronic coupling Hamiltonian. The advantage of the quadratic model Hamiltonian is that it allows one to use separate quadratic representations for potential energy surfaces of different electronic states and a more flexible representation of interstate couplings. We explore features introduced by the quadratic Hamiltonian in a series of 2D models, and then apply our formalism to the 2,6-bis(methylene) adamantyl cation and its dimethyl derivative. The Hamiltonian parameters for the molecular systems have been obtained from electronic structure calculations followed by a diabatization procedure. The evolution of electronic populations in the molecular systems using the perturbative formalism shows a good agreement with that from variational quantum dynamics.
Authors:
; ;  [1] ;  [2]
  1. Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4 (Canada)
  2. (Canada)
Publication Date:
OSTI Identifier:
22419876
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 141; Journal Issue: 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; APPROXIMATIONS; CATIONS; COUPLINGS; ELECTRONIC STRUCTURE; HAMILTONIANS; POTENTIAL ENERGY; SURFACES