skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: EGF stimulates Mg{sup 2+} influx in mammary epithelial cells

Journal Article · · Biochemical and Biophysical Research Communications

Highlights: • EGF stimulation potentiates Mg{sup 2+} influx into epithelial cells. • EGF-induced Mg{sup 2+} influx does not depend on the concomitantly induced Ca{sup 2+} signal. • EGF-induced Ca{sup 2+} signal is dependent on the presence of extracellular Mg{sup 2+}. • New players in EGF-mediated signaling might be exploited as therapeutic targets. - Abstract: Magnesium is well established as a fundamental factor that regulates cell proliferation. However, the molecular mechanisms linking mitogenic signals, extracellular magnesium availability and intracellular effectors are still largely unknown. In the present study we sought to determine whether EGF regulates magnesium homeostasis in normal HC11 mammary epithelial cells. To this end, we measured Mg{sup 2+} and Ca{sup 2+} fluxes by confocal imaging in live cells loaded with specific fluorescent ion indicators (Mag-Fluo-4 and Fluo-4, respectively). EGF stimulation induces a rapid and sustained increase in intracellular Mg{sup 2+}, concomitantly with a rise in intracellular calcium. The increase in intracellular Mg{sup 2+} derives from an influx from the extracellular compartment, and does not depend on Ca{sup 2+}. On the contrary, the increase in intracellular Ca{sup 2+} derives from intracellular stores, and is impaired in the absence of extracellular magnesium. Inhibition of the EGF receptor tyrosine kinase by Tyrphostin AG1478 markedly inhibits EGF-induced Mg{sup 2+} and Ca{sup 2+} signals. These findings demonstrate that not only does Mg{sup 2+} influx represent an important step in the physiological response of epithelial cells to EGF, but unexpectedly the EGF-induced Mg{sup 2+} influx is essential for the Ca{sup 2+} signal to occur.

OSTI ID:
22416847
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 454, Issue 4; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English