skip to main content

Title: p100, a precursor of NF-κB2, inhibits c-Rel and reduces the expression of IL-23 in dendritic cells

Highlights: • The deficiency of p100 enhances c-Rel-, not RelA-, dependent cytokine expression. • p100 associates with c-Rel in the steady state but dissociates after LPS stimulation. • The deficiency of p100 enhances the nuclear translocation of c-Rel. • p100 negatively regulates the c-Rel function. - Abstract: Nuclear factor κB regulates various genes involved in the immune response, inflammation, cell survival, and development. NF-κB activation is controlled by proteins possessing ankyrin repeats, such as IκBs. A precursor of the NF-κB2 (p52) subunit, p100, contains ankyrin repeats in its C-terminal portion and has been found to act as a cytoplasmic inhibitor of RelA in the canonical pathway of NF-κB activation. Here, we demonstrate that p100 also suppresses c-Rel function in dendritic cells. Expression of the p19 and p40 subunits of IL-23, a c-Rel-dependent cytokine, was enhanced in p100-deficient cells, although expression of a RelA-dependent cytokine, TNF-α, was reduced. Nuclear translocation of c-Rel was enhanced in p100-deficient cells. p100, and not the processed p52 form, associated with c-Rel in the steady state and dissociated immediately after lipopolysaccharide stimulation in wild-type dendritic cells. Four hours after the stimulation, p100 was newly synthesized and associated with c-Rel again. In cells expressing both c-Rel andmore » RelA, c-Rel is preferentially suppressed by p100.« less
Authors:
; ;
Publication Date:
OSTI Identifier:
22416792
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 453; Journal Issue: 3; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; BONE MARROW; DENDRITES; GENE REGULATION; GENES; GUANINE; HYPOXANTHINE; INFLAMMATION; INTERFERON; PRECURSOR; RECEPTORS; STEADY-STATE CONDITIONS; STIMULATION; TRANSLOCATION