skip to main content

SciTech ConnectSciTech Connect

Title: Src regulates the activity of SIRT2

Highlights: • Src decreases the protein levels of Sirt2. • Src inhibitor and knockdown of Src increase the protein levels of Sirt2. • Src interacts with and phosphorylates Sirt2. • Src regulate the activity of Sirt2. - Abstract: SIRT2 is a mammalian member of the Sirtuin family of NAD{sup +}-dependent protein deacetylases. The tyrosine kinase Src is involved in a variety of cellular signaling pathways, leading to the induction of DNA synthesis, cell proliferation, and cytoskeletal reorganization. The function of SIRT2 is modulated by post-translational modifications; however, the precise molecular signaling mechanism of SIRT2 through interactions with c-Src has not yet been established. In this study, we investigated the potential regulation of SIRT2 function by c-Src. We found that the protein levels of SIRT2 were decreased by c-Src, and subsequently rescued by the addition of a Src specific inhibitor, SU6656, or by siRNA-mediated knockdown of c-Src. The c-Src interacts with and phosphorylates SIRT2 at Tyr104. c-Src also showed the ability to regulate the deacetylation activity of SIRT2. Investigation on the phosphorylation of SIRT2 suggested that this was the method of c-Src-mediated SIRT2 regulation.
Authors:
 [1] ;  [2] ;  [1] ;  [1] ;  [1]
  1. College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju (Korea, Republic of)
  2. College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon (Korea, Republic of)
Publication Date:
OSTI Identifier:
22416674
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 450; Journal Issue: 2; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; CELL PROLIFERATION; DNA; NAD; PHOSPHORYLATION; PROTEINS; REGULATIONS; SYNTHESIS; TYROSINE