skip to main content

Title: Prostate Stereotactic Ablative Radiation Therapy Using Volumetric Modulated Arc Therapy to Dominant Intraprostatic Lesions

Purpose: To investigate boosting dominant intraprostatic lesions (DILs) in the context of stereotactic ablative radiation therapy (SABR) and to examine the impact on tumor control probability (TCP) and normal tissue complication probability (NTCP). Methods and Materials: Ten prostate datasets were selected. DILs were defined using T2-weighted, dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging. Four plans were produced for each dataset: (1) no boost to DILs; (2) boost to DILs, no seminal vesicles in prescription; (3) boost to DILs, proximal seminal vesicles (proxSV) prescribed intermediate dose; and (4) boost to DILs, proxSV prescribed higher dose. The prostate planning target volume (PTV) prescription was 42.7 Gy in 7 fractions. DILs were initially prescribed 115% of the PTV{sub Prostate} prescription, and PTV{sub DIL} prescriptions were increased in 5% increments until organ-at-risk constraints were reached. TCP and NTCP calculations used the LQ-Poisson Marsden, and Lyman-Kutcher-Burman models respectively. Results: When treating the prostate alone, the median PTV{sub DIL} prescription was 125% (range: 110%-140%) of the PTV{sub Prostate} prescription. Median PTV{sub DIL} D50% was 55.1 Gy (range: 49.6-62.6 Gy). The same PTV{sub DIL} prescriptions and similar PTV{sub DIL} median doses were possible when including the proxSV within the prescription. TCP depended on prostate α/β ratio and was highest withmore » an α/β ratio = 1.5 Gy, where the additional TCP benefit of DIL boosting was least. Rectal NTCP increased with DIL boosting and was considered unacceptably high in 5 cases, which, when replanned with an emphasis on reducing maximum dose to 0.5 cm{sup 3} of rectum (Dmax{sub 0.5cc}), as well as meeting existing constraints, resulted in considerable rectal NTCP reductions. Conclusions: Boosting DILs in the context of SABR is technically feasible but should be approached with caution. If this therapy is adopted, strict rectal constraints are required including Dmax{sub 0.5cc}. If the α/β ratio of prostate cancer is 1.5 Gy or less, then high TCP and low NTCP can be achieved by prescribing SABR to the whole prostate, without the need for DIL boosting.« less
Authors:
 [1] ;  [2] ; ; ;  [3] ;  [3] ;  [2] ;  [3] ;  [1] ;  [1] ;  [2] ;  [1]
  1. Department of Clinical Oncology, Leeds Cancer Centre, St. James's University Hospital, Leeds (United Kingdom)
  2. (United Kingdom)
  3. Department of Medical Physics, Leeds Cancer Centre, St. James's University Hospital, Leeds (United Kingdom)
Publication Date:
OSTI Identifier:
22416589
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 89; Journal Issue: 2; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; GY RANGE 10-100; NEOPLASMS; NMR IMAGING; PLANNING; PROBABILITY; PROSTATE; RADIATION DOSES; RADIOTHERAPY; RECTUM