skip to main content

SciTech ConnectSciTech Connect

Title: Intrafraction Prostate Translations and Rotations During Hypofractionated Robotic Radiation Surgery: Dosimetric Impact of Correction Strategies and Margins

Purpose: To investigate the dosimetric impact of intrafraction prostate motion and the effect of robot correction strategies for hypofractionated CyberKnife treatments with a simultaneously integrated boost. Methods and Materials: A total of 548 real-time prostate motion tracks from 17 patients were available for dosimetric simulations of CyberKnife treatments, in which various correction strategies were included. Fixed time intervals between imaging/correction (15, 60, 180, and 360 seconds) were simulated, as well as adaptive timing (ie, the time interval reduced from 60 to 15 seconds in case prostate motion exceeded 3 mm or 2° in consecutive images). The simulated extent of robot corrections was also varied: no corrections, translational corrections only, and translational corrections combined with rotational corrections up to 5°, 10°, and perfect rotational correction. The correction strategies were evaluated for treatment plans with a 0-mm or 3-mm margin around the clinical target volume (CTV). We recorded CTV coverage (V{sub 100%}) and dose-volume parameters of the peripheral zone (boost), rectum, bladder, and urethra. Results: Planned dose parameters were increasingly preserved with larger extents of robot corrections. A time interval between corrections of 60 to 180 seconds provided optimal preservation of CTV coverage. To achieve 98% CTV coverage in 98% of the treatments, translational and rotationalmore » corrections up to 10° were required for the 0-mm margin plans, whereas translational and rotational corrections up to 5° were required for the 3-mm margin plans. Rectum and bladder were spared considerably better in the 0-mm margin plans. Adaptive timing did not improve delivered dose. Conclusions: Intrafraction prostate motion substantially affected the delivered dose but was compensated for effectively by robot corrections using a time interval of 60 to 180 seconds. A 0-mm margin required larger extents of additional rotational corrections than a 3-mm margin but resulted in lower doses to rectum and bladder.« less
Authors:
 [1] ;  [1] ;  [2] ;  [1] ;  [3] ; ;  [1]
  1. Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands)
  2. (Italy)
  3. Alma Mater Studiorum, Department of Physics and Astronomy, Bologna University, Bologna (Italy)
Publication Date:
OSTI Identifier:
22416532
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 88; Journal Issue: 5; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BIOMEDICAL RADIOGRAPHY; BLADDER; CORRECTIONS; PATIENTS; PROSTATE; RADIATION DOSES; RECTUM; ROBOTS; ROTATION; SAFETY MARGINS; SURGERY