skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy

Journal Article · · Biochemical and Biophysical Research Communications
 [1];  [2]; ; ;  [1];  [1]
  1. Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)
  2. Department of Brain Cognition Computing Lab, University of Kent, Kent CT2 7NZ (United Kingdom)

Highlights: • Phosphorylation of mTOR is abnormal activation in SKOV3/DDP ovarian cancer cells. • Downregulation of mTOR by DHA helps to sensitize the SKOV3/DDP cells to chemotherapy. • DHA has the potential of induce autophagy in cancer cells. - Abstract: Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells.

OSTI ID:
22416273
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 444, Issue 3; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English