skip to main content

Title: Symmetry breaking and excitonic effects on optical properties of defective nanographenes

We investigate optical properties of the nanographene family and predict a defect induced effect by utilizing the all-electron first-principles GW+Bethe-Salpeter equation (BSE) method based on the many-body perturbation theory. As an accuracy check of the GW+BSE, photoabsorption spectra are calculated for a grossly warped nanographene (C{sub 80}H{sub 30}), which was very recently synthesized [Kawasumi et al., Nat. Chem. 5, 739–744 (2013)]. The calculated spectra are found to faithfully reproduce the shape, height, and position of the measured peaks. Then the method is applied to the flat nanographene without defect (C{sub 24}H{sub 12} and C{sub 38}H{sub 16}), the curved ones with single defect (C{sub 20}H{sub 10}, C{sub 28}H{sub 14}, and C{sub 32}H{sub 16}), and fragments of C{sub 80}H{sub 30} with double defect (C{sub 36}H{sub 16} and C{sub 42}H{sub 20}). The existence of the defects significantly changes the optical spectra. In particular, the interaction between the defects is found to break the symmetry of the atomic geometries and enhance the excitonic effect, thereby generating the extra peaks at the lower photon energy side of the main peak. The present results might help explain the origin of the first two peaks experimentally observed for C{sub 80}H{sub 30}.
Authors:
;  [1]
  1. Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)
Publication Date:
OSTI Identifier:
22416114
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 6; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; BETHE-SALPETER EQUATION; DIAGRAMS; ELECTRONS; EXCITONS; GRAPHENE; HYDROCARBONS; MANY-BODY PROBLEM; NANOSTRUCTURES; OPTICAL PROPERTIES; PERTURBATION THEORY; PHOTONS; SYMMETRY BREAKING