skip to main content

SciTech ConnectSciTech Connect

Title: The photodissociation dynamics of alkyl radicals

The photodisscociation dynamics of the alkyl radicals i-propyl (CH(CH{sub 3}){sub 2}) and t-butyl (C(CH{sub 3}){sub 3}) are investigated by H-atom photofragment imaging. While i-propyl is excited at 250 nm, the photodynamics of t-butyl are explored over a large energy range using excitation wavelengths between 347 nm and 233 nm. The results are compared to those obtained previously for ethyl, CH{sub 3}CH{sub 2}, and to those reported for t-butyl using 248 nm excitation. The translational energy (E{sub T}) distribution of the H-atom photofragments is bimodal and appears rather similar for all three radicals. The low E{sub T} part of the distribution shows an isotropic photofragment angular distribution, while the high E{sub T} part is associated with a considerable anisotropy. Thus, for t-butyl, two H-atom loss channels of roughly equal importance have been identified in addition to the CH{sub 3}-loss channel reported previously. A mechanism for the photodissociation of alkyl radicals is suggested that is based on interactions between Rydberg- and valence states.
Authors:
;  [1]
  1. Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg (Germany)
Publication Date:
OSTI Identifier:
22416048
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 4; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ALKYL RADICALS; ANGULAR DISTRIBUTION; ANISOTROPY; ATOMS; COMPARATIVE EVALUATIONS; DISSOCIATION; EXCITATION; HYDROGEN; PHOTOIONIZATION; PHOTOLYSIS; RYDBERG STATES; VALENCE; WAVELENGTHS