skip to main content

Title: On the accuracy of coherent modified Redfield theory in simulating excitation energy transfer dynamics

In this study, we investigate the accuracy of a recently developed coherent modified Redfield theory (CMRT) in simulating excitation energy transfer (EET) dynamics. The CMRT is a secular non-Markovian quantum master equation that is derived by extending the modified Redfield theory to treat coherence dynamics in molecular excitonic systems. Herein, we systematically survey the applicability of the CMRT in a large EET parameter space through the comparisons of the CMRT EET dynamics in a dimer system with the numerically exact results. The results confirm that the CMRT exhibits a broad applicable range and allow us to locate the specific parameter regimes where CMRT fails to provide adequate results. Moreover, we propose an accuracy criterion based on the magnitude of second-order perturbation to characterize the applicability of CMRT and show that the criterion summarizes all the benchmark results and the physics described by CMRT. Finally, we employ the accuracy criterion to quantitatively compare the performance of CMRT to that of a small polaron quantum master equation approach. The comparison demonstrates the complementary nature of these two methods, and as a result, the combination of the two methods provides accurate simulations of EET dynamics for the full parameter space investigated in thismore » study. Our results not only delicately evaluate the applicability of the CMRT but also reveal new physical insights for factors controlling the dynamics of EET that should be useful for developing more accurate and efficient methods for simulations of EET dynamics in molecular aggregate systems.« less
Authors:
;  [1]
  1. Department of Chemistry and Center for Quantum Science and Engineering, National Taiwan University, Taipei City 106, Taiwan (China)
Publication Date:
OSTI Identifier:
22415999
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 3; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ACCURACY; BENCHMARKS; COMPARATIVE EVALUATIONS; COMPUTERIZED SIMULATION; DIMERS; DISTURBANCES; ENERGY TRANSFER; EQUATIONS; EXCITATION; MARKOV PROCESS; PERFORMANCE; POLARONS