skip to main content

SciTech ConnectSciTech Connect

Title: Beyond the single-file fluid limit using transfer matrix method: Exact results for confined parallel hard squares

We extend the transfer matrix method of one-dimensional hard core fluids placed between confining walls for that case where the particles can pass each other and at most two layers can form. We derive an eigenvalue equation for a quasi-one-dimensional system of hard squares confined between two parallel walls, where the pore width is between σ and 3σ (σ is the side length of the square). The exact equation of state and the nearest neighbor distribution functions show three different structures: a fluid phase with one layer, a fluid phase with two layers, and a solid-like structure where the fluid layers are strongly correlated. The structural transition between differently ordered fluids develops continuously with increasing density, i.e., no thermodynamic phase transition occurs. The high density structure of the system consists of clusters with two layers which are broken with particles staying in the middle of the pore.
Authors:
;  [1]
  1. Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201 (Hungary)
Publication Date:
OSTI Identifier:
22415975
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 22; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; DENSITY; DISTRIBUTION FUNCTIONS; EIGENVALUES; EQUATIONS OF STATE; FLUIDS; LAYERS; ONE-DIMENSIONAL CALCULATIONS; PARTICLES; PHASE TRANSFORMATIONS; SOLIDS; TRANSFER MATRIX METHOD