skip to main content

Title: Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret

Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH{sub 2} group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO withmore » an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C{sub 2v} symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice–Ramsperger–Kassel–Marcus/multi-well master equation simulations, the results of which reveal the formation of (NO{sub 2} + H{sub 2}O) to be the major decomposition path. Furthermore, we provide fundamental interpretations for the experimental results of Klapötke et al. [Combust. Flame 139, 358–366 (2004)] regarding the thermal stability of MNB and DNB, and their decomposition products. Notably, a fundamental understanding of fuel stability, decomposition mechanism, and key reactions leading to ignition is essential in the design and manipulation of molecular systems for the development of new energetic materials for advanced propulsion applications.« less
Authors:
;  [1]
  1. Propellants Branch, Rocket Propulsion Division, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRP, 10 E. Saturn Blvd., Edwards AFB, California 93524 (United States)
Publication Date:
OSTI Identifier:
22415866
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 20; Other Information: (c) 2015 U.S. Government; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; AMINES; CARBONYLS; DEPARTURE NUCLEATE BOILING; DIPOLE MOMENTS; INTERATOMIC DISTANCES; KINETICS; MANGANESE BORIDES; MOLECULES; NITROGEN; NITROGEN DIOXIDE; POLARIZATION; POTENTIAL ENERGY; PYROLYSIS; REACTIVITY; TEMPERATURE DEPENDENCE