skip to main content

SciTech ConnectSciTech Connect

Title: Solvatochromism of 9,10-phenanthrenequinone: An electronic and resonance Raman spectroscopic study

Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-π{sup 1}*; S{sub 1} state) and the shorter (1π-π{sup 1}*; S{sub 2} state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bond weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S{sub 2} state relative to the ground state. Raman excitation profiles of PQ (400–1800 cm{sup −1}) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C{sub 2ν} symmetry constraint on the S{sub 2} state resulted in an imaginary frequency along the low-frequency out-of-plane torsionalmore » modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling.« less
Authors:
; ;
Publication Date:
OSTI Identifier:
22415829
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 2; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ABSORPTION; ABSORPTION SPECTRA; COUPLING; DENSITY FUNCTIONAL METHOD; EXCITATION; GAIN; GROUND STATES; HYDROGEN; LIMITING VALUES; MIXED STATE; MIXED STATES; RAMAN SPECTROSCOPY; RESONANCE; SOLUTES; SOLVATION; SOLVENTS