skip to main content

SciTech ConnectSciTech Connect

Title: Theoretical study of thorium monoxide for the electron electric dipole moment search: Electronic properties of H{sup 3}Δ{sub 1} in ThO

Recently, improved limits on the electron electric dipole moment, and dimensionless constant, k{sub T,P}, characterizing the strength of the T,P-odd pseudoscalar–scalar electron–nucleus neutral current interaction in the H{sup 3}Δ{sub 1} state of ThO molecule were obtained by the ACME collaboration [J. Baron et al., Science 343, 269 (2014)]. The interpretation of the experiment in terms of these fundamental quantities is based on the results of theoretical study of appropriate ThO characteristics, the effective electric field acting on electron, E{sub eff}, and a parameter of the T,P-odd pseudoscalar–scalar interaction, W{sub T,P}, given in Skripnikov et al. [J. Chem. Phys. 139, 221103 (2013)] by St. Petersburg group. To reduce the uncertainties of the given limits, we report improved calculations of the molecular state–specific quantities E{sub eff}, 81.5 GV/cm, and W{sub T,P}, 112 kHz, with the uncertainty within 7% of the magnitudes. Thus, the values recommended to use for the upper limits of the quantities are 75.8 GV/cm and 104 kHz, correspondingly. The hyperfine structure constant, molecule-frame dipole moment of the H{sup 3}Δ{sub 1} state, and the H{sup 3}Δ{sub 1} → X{sup 1}Σ{sup +} transition energy which, in general, can serve as a measure of reliability of the obtained E{sub eff} and W{submore » T,P} values are also calculated. In addition, we report the first calculation of g-factor for the H{sup 3}Δ{sub 1} state of ThO. The results are compared to the earlier experimental and theoretical studies, and a detailed analysis of uncertainties of the calculations is given.« less
Authors:
;  [1] ;  [2]
  1. B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad district 188300 (Russian Federation)
  2. (Russian Federation)
Publication Date:
OSTI Identifier:
22415826
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 2; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; COMPARATIVE EVALUATIONS; ELECTRIC DIPOLE MOMENTS; ELECTRIC FIELDS; ELECTRONS; HYPERFINE STRUCTURE; LANDE FACTOR; MOLECULES; NEUTRAL-CURRENT INTERACTIONS; RELIABILITY; SCALARS; THORIUM; THORIUM OXIDES