skip to main content

SciTech ConnectSciTech Connect

Title: A new approach to calculate charge carrier transport mobility in organic molecular crystals from imaginary time path integral simulations

We present a new non-perturbative method to calculate the charge carrier mobility using the imaginary time path integral approach, which is based on the Kubo formula for the conductivity, and a saddle point approximation to perform the analytic continuation. The new method is first tested using a benchmark calculation from the numerical exact hierarchical equations of motion method. Imaginary time path integral Monte Carlo simulations are then performed to explore the temperature dependence of charge carrier delocalization and mobility in organic molecular crystals (OMCs) within the Holstein and Holstein-Peierls models. The effects of nonlocal electron-phonon interaction on mobility in different charge transport regimes are also investigated.
Authors:
;  [1]
  1. Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190 (China)
Publication Date:
OSTI Identifier:
22415732
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 17; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BENCHMARKS; CHARGE CARRIERS; CHARGE TRANSPORT; COMPUTERIZED SIMULATION; ELECTRON-PHONON COUPLING; EQUATIONS OF MOTION; KUBO FORMULA; MOBILITY; MOLECULAR CRYSTALS; MONTE CARLO METHOD; PATH INTEGRALS; TEMPERATURE DEPENDENCE