skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural transformation between long and short-chain form of liquid sulfur from ab initio molecular dynamics

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4917040· OSTI ID:22415678
;  [1];  [2]
  1. Department of Experimental Physics, Comenius University, Mlynská Dolina F2, 842 48 Bratislava (Slovakia)
  2. Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava (Slovakia)

We present results of ab initio molecular dynamics study of the structural transformation occurring in hot liquid sulfur under high pressure, which corresponds to the recently observed chain-breakage phenomenon and to the electronic transition reported earlier. The transformation is temperature-induced and separates two distinct polymeric forms of liquid sulfur: high-temperature form composed of short chain-like fragments with open endings and low-temperature form with very long chains. We offer a structural description of the two liquid forms in terms of chain lengths, cross-linking, and chain geometry and investigate several physical properties. We conclude that the transformation is accompanied by changes in energy (but not density) as well as in diffusion coefficient and electronic properties—semiconductor-metal transition. We also describe the analogy of the investigated process to similar phenomena that take place in two other chalcogens selenium and tellurium. Finally, we remark that the behavior of heated liquid sulfur at ambient pressure might indicate a possible existence of a critical point in the low-pressure region of sulfur phase diagram.

OSTI ID:
22415678
Journal Information:
Journal of Chemical Physics, Vol. 142, Issue 15; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English