skip to main content

Title: Orbital relaxation effects on Kohn–Sham frontier orbital energies in density functional theory

We explore effects of orbital relaxation on Kohn–Sham frontier orbital energies in density functional theory by using a nonempirical scaling correction approach developed in Zheng et al. [J. Chem. Phys. 138, 174105 (2013)]. Relaxation of Kohn–Sham orbitals upon addition/removal of a fractional number of electrons to/from a finite system is determined by a systematic perturbative treatment. The information of orbital relaxation is then used to improve the accuracy of predicted Kohn–Sham frontier orbital energies by Hartree–Fock, local density approximation, and generalized gradient approximation methods. The results clearly highlight the significance of capturing the orbital relaxation effects. Moreover, the proposed scaling correction approach provides a useful way of computing derivative gaps and Fukui quantities of N-electron finite systems (N is an integer), without the need to perform self-consistent-field calculations for (N ± 1)-electron systems.
Authors:
 [1] ;  [1] ;  [2] ;  [3] ;  [3] ;  [2]
  1. Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China)
  2. (China)
  3. Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States)
Publication Date:
OSTI Identifier:
22415664
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 15; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ACCURACY; APPROXIMATIONS; CAPTURE; CORRECTIONS; DENSITY FUNCTIONAL METHOD; ELECTRONS; HARTREE-FOCK METHOD; RELAXATION; SELF-CONSISTENT FIELD