skip to main content

SciTech ConnectSciTech Connect

Title: Charge transport in organic crystals: Critical role of correlated fluctuations unveiled by analysis of Feynman diagrams

Organic crystals have unique charge transport properties that lie somewhere between delocalised band-type transport and localised hopping transport. In this paper, we use a stochastic tight-binding model to explore how dynamical disorder in organic crystals affects charge transport. By analysing the model in terms of Feynman diagrams (virtual processes), we expose the crucial role of correlated dynamical disorder to the charge transport dynamics in the model at short times in the order of a few hundred femtoseconds. Under correlated dynamical disorder, the random motions of molecules in the crystal allow for low-energy “bonding”-type interactions between neighboring molecular orbitals can persist over long periods of time. On the other hand, the dependence of charge transport on correlated dynamical disorder also tends to localize the charge, as correlated disorder cannot persist far in space. This concept of correlation may be the “missing link” for describing the intermediate regime between band transport and hopping transport that occurs in organic crystals.
Authors:
; ; ;  [1]
  1. Advanced Institute for Materials Research, Tohoku University, Sendai (Japan)
Publication Date:
OSTI Identifier:
22415645
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 14; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CHARGE TRANSPORT; CORRELATIONS; CRYSTALS; FEYNMAN DIAGRAM; FLUCTUATIONS; MOLECULES; ORGANIC COMPOUNDS; RANDOMNESS; SPACE; STOCHASTIC PROCESSES