skip to main content

SciTech ConnectSciTech Connect

Title: Microwave spectroscopy of the seeded binary and ternary clusters CO-(pH{sub 2}){sub 2}, CO-pH{sub 2}-He, CO-HD, and CO-(oD{sub 2}){sub N=1,2}

We report the Fourier transform microwave spectra of the a-type J = 1-0 transitions of the binary and ternary CO-(pH{sub 2}){sub 2}, CO-pH{sub 2}-He, CO-HD, and CO-(oD{sub 2}){sub N=1,2} clusters. In addition to the normal isotopologue of CO for all clusters, we observed the transitions of the minor isotopologues, {sup 13}C{sup 16}O, {sup 12}C{sup 18}O, and {sup 13}C{sup 18}O, for CO-(pH{sub 2}){sub 2} and CO-pH{sub 2}-He. All transitions lie within 335 MHz of the experimentally or theoretically predicted values. In comparison to previously reported infrared spectra [Moroni et al., J. Chem. Phys. 122, 094314 (2005)], we are able to tentatively determine the vibrational shift for CO-pH{sub 2}-He, in addition to its b-type J = 1-0 transition frequency. The a-type frequency of CO-pH{sub 2}-He is similar to that of CO-He{sub 2} [Surin et al., Phys. Rev. Lett. 101, 233401 (2008)], suggesting that the pH{sub 2} molecule has a strong localizing effect on the He density. Perturbation theory analysis of CO-oD{sub 2} reveals that it is approximately T-shaped, with an anisotropy of the intermolecular potential amounting to ∼9 cm{sup −1}.
Authors:
 [1] ;  [2]
  1. Department of Chemistry, University of Adelaide, SA 5005 (Australia)
  2. Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada)
Publication Date:
OSTI Identifier:
22415639
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 14; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANISOTROPY; CARBON 12; CARBON 13; CARBON MONOXIDE; COMPARATIVE EVALUATIONS; FOURIER TRANSFORMATION; HELIUM; INFRARED SPECTRA; INTERMOLECULAR FORCES; MHZ RANGE; MICROWAVE RADIATION; MICROWAVE SPECTRA; MOLECULES; PERTURBATION THEORY; PH VALUE; POTENTIALS; SPECTROSCOPY