skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fourier-transform spectroscopy and potential construction of the (2){sup 1}Π state in KCs

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4916906· OSTI ID:22415613

The paper presents an empirical pointwise potential energy curve (PEC) of the (2){sup 1}Π state of the KCs molecule constructed by applying the Inverted Perturbation Approach routine. The experimental term values in the energy range E(v′, J′) ∈ [15 407; 16 579] cm{sup −1} involved in the fit were based on Fourier-Transform spectroscopy data obtained with 0.01 cm{sup −1} accuracy from the laser-induced (2){sup 1}Π → X{sup 1}Σ{sup +} fluorescence spectra. Buffer gas Ar was used to facilitate the appearance of rotation relaxation lines in the spectra, thus enlarging the (2){sup 1}Π data set and allowing determination of the Λ-splitting constants. The data set included vibrational v′ ∈ [0, 28] and rotational J′ ∈ [7, 274] quantum numbers covering about 67% of the potential well. The present PEC reproduces the overall set of data included in the fit with a standard deviation of 0.5 cm{sup −1}. The obtained value of the Λ-doubling constant q = + 1.8 × 10{sup −6} cm{sup −1} for J′ > 50 and v′ ∈ [0, 6] is in an excellent agreement with q = + 1.84 × 10{sup −6} cm{sup −1} reported in Kim, Lee, and Stolyarov [J. Mol. Spectrosc. 256, 57-67 (2009)].

OSTI ID:
22415613
Journal Information:
Journal of Chemical Physics, Vol. 142, Issue 13; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English