skip to main content

Title: Infrared rovibrational spectroscopy of OH–C{sub 2}H{sub 2} in {sup 4}He nanodroplets: Parity splitting due to partially quenched electronic angular momentum

The T-shaped OH–C{sub 2}H{sub 2} complex is formed in helium droplets via the sequential pick-up and solvation of the monomer fragments. Rovibrational spectra of the a-type OH stretch and b-type antisymmetric CH stretch vibrations contain resolved parity splitting that reveals the extent to which electronic angular momentum of the OH moiety is quenched upon complex formation. The energy difference between the spin-orbit coupled {sup 2}B{sub 1} (A″) and {sup 2}B{sub 2} (A′) electronic states is determined spectroscopically to be 216 cm{sup −1} in helium droplets, which is 13 cm{sup −1} larger than in the gas phase [Marshall et al., J. Chem. Phys. 121, 5845 (2004)]. The effect of the helium is rationalized as a difference in the solvation free energies of the two electronic states. This interpretation is motivated by the separation between the Q(3/2) and R(3/2) transitions in the infrared spectrum of the helium-solvated {sup 2}Π{sub 3/2} OH radical. Despite the expectation of a reduced rotational constant, the observed Q(3/2) to R(3/2) splitting is larger than in the gas phase by ≈0.3 cm{sup −1}. This observation can be accounted for quantitatively by assuming the energetic separation between {sup 2}Π{sub 3/2} and {sup 2}Π{sub 1/2} manifolds is increased by ≈40more » cm{sup −1} upon helium solvation.« less
Authors:
;  [1] ;  [2] ;  [3]
  1. Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556 (United States)
  2. Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005 (Australia)
  3. Department of Chemistry, Amherst College, Amherst, Massachusetts 01002-5000 (United States)
Publication Date:
OSTI Identifier:
22415610
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 13; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ACETYLENE; DROPLETS; FREE ENERGY; HELIUM; HELIUM 4; HYDROXYL RADICALS; INFRARED SPECTRA; MONOMERS; PARITY; ROTATIONAL STATES; SOLVATION; SPECTROSCOPY; SPIN; VIBRATIONAL STATES