skip to main content

Title: Superfluid response of two-dimensional parahydrogen clusters in confinement

We study by computer simulations the effect of confinement on the superfluid properties of small two-dimensional (2D) parahydrogen clusters. For clusters of fewer than twenty molecules, the superfluid response in the low temperature limit is found to remain comparable in magnitude to that of free clusters, within a rather wide range of depth and size of the confining well. The resilience of the superfluid response is attributable to the “supersolid” character of these clusters. We investigate the possibility of establishing a bulk 2D superfluid “cluster crystal” phase of p-H{sub 2}, in which a global superfluid response would arise from tunnelling of molecules across adjacent unit cells. The computed energetics suggests that for clusters of about ten molecules, such a phase may be thermodynamically stable against the formation of the equilibrium insulating crystal, for values of the cluster crystal lattice constant possibly allowing tunnelling across adjacent unit cells.
Authors:
;  [1]
  1. Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E7 (Canada)
Publication Date:
OSTI Identifier:
22415607
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 13; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; COMPARATIVE EVALUATIONS; COMPUTERIZED SIMULATION; CONFINEMENT; CRYSTALS; EQUILIBRIUM; HYDROGEN; MOLECULAR CLUSTERS; MOLECULES; SUPERFLUIDITY; TUNNEL EFFECT; TWO-DIMENSIONAL SYSTEMS