skip to main content

Title: Calculation of the molecular integrals with the range-separated correlation factor

Explicitly correlated quantum chemical calculations require calculations of five types of two-electron integrals beyond the standard electron repulsion integrals. We present a novel scheme, which utilises general ideas of the McMurchie-Davidson technique, to compute these integrals when the so-called “range-separated” correlation factor is used. This correlation factor combines the well-known short range behaviour resulting from the electronic cusp condition, with the exact long-range asymptotics derived for the helium atom [Lesiuk, Jeziorski, and Moszynski, J. Chem. Phys. 139, 134102 (2013)]. Almost all steps of the presented procedure are formulated recursively, so that an efficient implementation and control of the precision are possible. Additionally, the present formulation is very flexible and general, and it allows for use of an arbitrary correlation factor in the electronic structure calculations with minor or no changes.
Authors:
; ;  [1]
  1. Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)
Publication Date:
OSTI Identifier:
22415550
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 12; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ACCURACY; ASYMPTOTIC SOLUTIONS; ATOMS; CONTROL; CORRELATIONS; ELECTRONIC STRUCTURE; ELECTRONS; HELIUM; IMPLEMENTATION; INTEGRALS