skip to main content

Title: High-resolution laser spectroscopy and magnetic effect of the B{sup ~2}E{sup ′}←X{sup ~2}A{sub 2}{sup ′} transition of the {sup 15}N substituted nitrate radical

Rotationally resolved high-resolution fluorescence excitation spectra of the 0–0 band of the B{sup ~2}E{sup ′}←X{sup ~2}A{sub 2}{sup ′} transition of the {sup 15}N substituted nitrate radical were observed for the first time, by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. Several thousand rotational lines were detected in the 15 080–15 103 cm{sup −1} region. We observed the Zeeman splitting of intense lines up to 360 G in order to obtain secure rotational assignment. Two, nine, and seven rotational line pairs with 0.0248 cm{sup −1} spacing were assigned to the transitions from the X{sup ~2}A{sub 2}{sup ′} (υ″ = 0, k″ = 0, N″ = 1, J″ = 0.5 and 1.5) to the {sup 2}E{sub 3/2}{sup ′} (J′ = 1.5), {sup 2}E{sub 1/2}{sup ′} (J′ = 0.5), and {sup 2}E{sub 1/2}{sup ′} (J′ = 1.5) levels, respectively, based on the ground state combination differences and the Zeeman splitting patterns. The observed spectrum was complicated due to the vibronic coupling between the bright B{sup ~2}E{sup ′} (υ = 0) state and surrounding dark vibronic states. Some series of rotational lines other than those from the X{sup ~2}A{sub 2}{sup ′} (J = 0.5 and 1.5) levelsmore » were also assigned by the ground state combination differences and the observed Zeeman splitting. The rotational branch structures were identified, and the molecular constants of the B{sup ~2}E{sub 1/2}{sup ′} (υ = 0) state were estimated by a deperturbed analysis to be T{sub 0} = 15 098.20(4) cm{sup −1}, B = 0.4282(7) cm{sup −1}, and D{sub J} = 4 × 10{sup −4} cm{sup −1}. In the observed region, both the {sup 2}E{sub 1/2}{sup ′} and {sup 2}E{sub 3/2}{sup ′} spin-orbit components were identified, and the spin-orbit interaction constant of the B{sup ~2}E{sup ′} (υ = 0) state was estimated to be −12 cm{sup −1} as the lower limit.« less
Authors:
;  [1] ;  [2] ;  [3] ;  [1] ;  [4]
  1. Graduate School of Science, Kobe University, Kobe 657-8501 (Japan)
  2. Graduate School of Information Sciences, Hiroshima City University, Hiroshima 731-3194 (Japan)
  3. The Graduate University for Advanced Studies, Kanagawa 240-0193 (Japan)
  4. (Japan)
Publication Date:
OSTI Identifier:
22415531
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 11; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; DYE LASERS; EXCITATION; FLUORESCENCE; GROUND STATES; LASER SPECTROSCOPY; L-S COUPLING; MOLECULAR BEAMS; NITRATES; NITROGEN 15; RADICALS; ZEEMAN EFFECT