skip to main content

SciTech ConnectSciTech Connect

Title: One-electron reduced density matrices of strongly correlated harmonium atoms

Explicit asymptotic expressions are derived for the reduced one-electron density matrices (the 1-matrices) of strongly correlated two- and three-electron harmonium atoms in the ground and first excited states. These expressions, which are valid at the limit of small confinement strength ω, yield electron densities and kinetic energies in agreement with the published values. In addition, they reveal the ω{sup 5/6} asymptotic scaling of the exchange components of the electron-electron repulsion energies that differs from the ω{sup 2/3} scaling of their Coulomb and correlation counterparts. The natural orbitals of the totally symmetric ground state of the two-electron harmonium atom are found to possess collective occupancies that follow a mixed power/Gaussian dependence on the angular momentum in variance with the simple power-law prediction of Hill’s asymptotics. Providing rigorous constraints on energies as functionals of 1-matrices, these results are expected to facilitate development of approximate implementations of the density matrix functional theory and ensure their proper description of strongly correlated systems.
Authors:
 [1]
  1. Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland and Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, D-01187 Dresden (Germany)
Publication Date:
OSTI Identifier:
22415522
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 11; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; ANGULAR MOMENTUM; ASYMPTOTIC SOLUTIONS; ATOMS; CONFINEMENT; CORRELATIONS; DENSITY MATRIX; ELECTRON DENSITY; ELECTRONS; EXCITED STATES; FUNCTIONALS; GROUND STATES; KINETIC ENERGY; LIMITING VALUES