skip to main content

Title: The time-resolved photoelectron spectrum of toluene using a perturbation theory approach

A theoretical study of the intra-molecular vibrational-energy redistribution of toluene using time-resolved photo-electron spectra calculated using nuclear quantum dynamics and a simple, two-mode model is presented. Calculations have been carried out using the multi-configuration time-dependent Hartree method, using three levels of approximation for the calculation of the spectra. The first is a full quantum dynamics simulation with a discretisation of the continuum wavefunction of the ejected electron, whilst the second uses first-order perturbation theory to calculate the wavefunction of the ion. Both methods rely on the explicit inclusion of both the pump and probe laser pulses. The third method includes only the pump pulse and generates the photo-electron spectrum by projection of the pumped wavepacket onto the ion potential energy surface, followed by evaluation of the Fourier transform of the autocorrelation function of the subsequently propagated wavepacket. The calculations performed have been used to study the periodic population flow between the 6a and 10b16b modes in the S{sub 1} excited state, and compared to recent experimental data. We obtain results in excellent agreement with the experiment and note the efficiency of the perturbation method.
Authors:
;  [1]
  1. School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom)
Publication Date:
OSTI Identifier:
22415412
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 141; Journal Issue: 24; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; APPROXIMATIONS; COMPARATIVE EVALUATIONS; ELECTRON SPECTRA; ELECTRONS; EXCITED STATES; FOURIER TRANSFORMATION; LASER RADIATION; PERIODICITY; PERTURBATION THEORY; PHOTOELECTRON SPECTROSCOPY; POTENTIAL ENERGY; SURFACES; TIME DEPENDENCE; TIME RESOLUTION; TOLUENE; WAVE FUNCTIONS; WAVE PACKETS