skip to main content

Title: Ring-polymer molecular dynamics: Rate coefficient calculations for energetically symmetric (near thermoneutral) insertion reactions (X + H{sub 2}) → HX + H(X = C({sup 1}D), S({sup 1}D))

Following our previous study of prototypical insertion reactions of energetically asymmetric type with the RPMD (Ring-Polymer Molecular Dynamics) method [Y. Li, Y. Suleimanov, and H. Guo, J. Phys. Chem. Lett. 5, 700 (2014)], we extend it to two other prototypical insertion reactions with much less exothermicity (near thermoneutral), namely, X + H{sub 2} → HX + H where X = C({sup 1}D), S({sup 1}D), in order to assess the accuracy of this method for calculating thermal rate coefficients for this class of reactions. For both chemical reactions, RPMD displays remarkable accuracy and agreement with the previous quantum dynamic results that make it encouraging for the future application of the RPMD to other barrier-less, complex-forming reactions involving polyatomic reactants with any exothermicity.
Authors:
 [1] ;  [2] ; ;  [1] ;  [3]
  1. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
  2. (Cyprus)
  3. Department of Chemical and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)
Publication Date:
OSTI Identifier:
22415402
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 141; Journal Issue: 24; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ACCURACY; ASYMMETRY; CHEMICAL REACTIONS; HYDROGEN; MOLECULAR DYNAMICS METHOD; POLYMERS; SYMMETRY