skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fully quantal calculation of H{sub 2} translation-rotation states in the (p-H{sub 2}){sub 2}@5{sup 12}6{sup 4} clathrate hydrate inclusion compound

Abstract

The quantal translation-rotation (TR) states of the (p-H{sub 2}){sub 2}@5{sup 12}6{sup 4} clathrate hydrate inclusion compound have been computed. The ten-dimensional problem (in the rigid-cage and rigid-H{sub 2} approximation) is solved by first approximating the H{sub 2} moieties as spherically symmetric and solving for their 6D translational eigenstates. These are then combined with H{sub 2} free rotational states in a product basis that is used to diagonalize the full TR hamiltonian. The computed low-energy eigenstates have translational components that are essentially identical to the 6D translational eigenstates and rotational components that are 99.9% composed of rotationally unexcited H{sub 2} moieties. In other words, TR coupling is minimal for the low-energy states of the species. The low-energy level structure is found to be substantially more congested than that of the more tightly packed (p-H{sub 2}){sub 4}@5{sup 12}6{sup 4} clathrate species. The level structure is also shown to be understandable in terms of a model of (H{sub 2}){sub 2} as a semirigid diatomic species consisting of two spherically symmetric H{sub 2} pseudo-atoms.

Authors:
 [1]
  1. Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569 (United States)
Publication Date:
OSTI Identifier:
22415351
Resource Type:
Journal Article
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 141; Journal Issue: 18; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0021-9606
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CLATHRATES; COUPLING; EIGENSTATES; HAMILTONIANS; HYDRATES; HYDROGEN; ROTATION; ROTATIONAL STATES

Citation Formats

Felker, Peter M., E-mail: felker@chem.ucla.edu. Fully quantal calculation of H{sub 2} translation-rotation states in the (p-H{sub 2}){sub 2}@5{sup 12}6{sup 4} clathrate hydrate inclusion compound. United States: N. p., 2014. Web. doi:10.1063/1.4901057.
Felker, Peter M., E-mail: felker@chem.ucla.edu. Fully quantal calculation of H{sub 2} translation-rotation states in the (p-H{sub 2}){sub 2}@5{sup 12}6{sup 4} clathrate hydrate inclusion compound. United States. https://doi.org/10.1063/1.4901057
Felker, Peter M., E-mail: felker@chem.ucla.edu. 2014. "Fully quantal calculation of H{sub 2} translation-rotation states in the (p-H{sub 2}){sub 2}@5{sup 12}6{sup 4} clathrate hydrate inclusion compound". United States. https://doi.org/10.1063/1.4901057.
@article{osti_22415351,
title = {Fully quantal calculation of H{sub 2} translation-rotation states in the (p-H{sub 2}){sub 2}@5{sup 12}6{sup 4} clathrate hydrate inclusion compound},
author = {Felker, Peter M., E-mail: felker@chem.ucla.edu},
abstractNote = {The quantal translation-rotation (TR) states of the (p-H{sub 2}){sub 2}@5{sup 12}6{sup 4} clathrate hydrate inclusion compound have been computed. The ten-dimensional problem (in the rigid-cage and rigid-H{sub 2} approximation) is solved by first approximating the H{sub 2} moieties as spherically symmetric and solving for their 6D translational eigenstates. These are then combined with H{sub 2} free rotational states in a product basis that is used to diagonalize the full TR hamiltonian. The computed low-energy eigenstates have translational components that are essentially identical to the 6D translational eigenstates and rotational components that are 99.9% composed of rotationally unexcited H{sub 2} moieties. In other words, TR coupling is minimal for the low-energy states of the species. The low-energy level structure is found to be substantially more congested than that of the more tightly packed (p-H{sub 2}){sub 4}@5{sup 12}6{sup 4} clathrate species. The level structure is also shown to be understandable in terms of a model of (H{sub 2}){sub 2} as a semirigid diatomic species consisting of two spherically symmetric H{sub 2} pseudo-atoms.},
doi = {10.1063/1.4901057},
url = {https://www.osti.gov/biblio/22415351}, journal = {Journal of Chemical Physics},
issn = {0021-9606},
number = 18,
volume = 141,
place = {United States},
year = {Fri Nov 14 00:00:00 EST 2014},
month = {Fri Nov 14 00:00:00 EST 2014}
}