skip to main content

Title: A three-dimensional metal–organic framework for selective sensing of nitroaromatic compounds

A 3D metal–organic framework [NH{sub 2}(CH{sub 3}){sub 2}][Cd{sub 6}(L){sub 4}(DMF){sub 6}(HCOO)](DMF = N,N-dimethylformamide) (1) has been synthesized using a tripodal ligand H{sub 3}L (2,4,6-tris[1-(3-carboxylphenoxy)ylmethyl]mesitylene). The obtained complex exhibits a 3D framework containing hexanuclear (Cd{sub 6}) building units formed by two trinuclear (Cd{sub 3}) clusters that are connected via HCOO{sup −} anions. For complex 1, the participation of the fluorescent ligand H{sub 3}L not only gives rise to a strong photoluminescence emission as expected, but more interestingly, that ligand originated characteristic band could be quenched selectively by nitrobenzene with a low detection limit, showing its potential as a highly sensitive and selective sensor for nitrobenzene. Based on an electron transfer quenching mechanism, the fluorescence sensing ability of 1 is also applicable for other electron-deficient nitroaromatic compounds with high selectivity and sensitivity, i.e., 1,4-dinitrobenzene, 1,3-dinitrobenzene, 2,4-dinitrotoluene, and 4-nitrotoluene, suggesting 1 a promising fluorescence sensor for detecting and recognizing the same kind of chemicals.
Authors:
; ; ;  [1] ;  [1] ;  [2]
  1. Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, and Tianjin Key Lab of Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071 (China)
  2. (China)
Publication Date:
OSTI Identifier:
22415230
Resource Type:
Journal Article
Resource Relation:
Journal Name: APL materials; Journal Volume: 2; Journal Issue: 12; Other Information: (c) 2014 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ANIONS; CADMIUM; ELECTRON TRANSFER; ELECTRONS; FLUORESCENCE; LIGANDS; MESITYLENE; NITROBENZENE; ORGANOMETALLIC COMPOUNDS; PHOTOLUMINESCENCE; QUENCHING; SENSORS; THREE-DIMENSIONAL LATTICES