skip to main content

SciTech ConnectSciTech Connect

Title: A detailed study of magnetization reversal in individual Ni nanowires

Magnetic nanowires have emerged as essential components for a broad range of applications. In many cases, a key property of these components is the switching field, which is studied as a function of the angle between the field and the nanowire. We found remarkable differences of up to 100% between the switching fields of different nanowires from the same fabrication batch. Our experimental results and micromagnetic simulations indicate that the nanowires exhibit a single domain behavior and that the switching mechanism includes vortex domain wall motion across the nanowire. The differences between the switching fields are attributed to different cross-sections of the nanowires, as found by electron microscopy. While a circular cross-section yields the smallest switching field values, any deviation from this shape results in an increase of the switching field. The shape of the nanowires' cross-sections is thus a critical parameter that has not been previously taken into account.
Authors:
; ; ;  [1]
  1. Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955 (Saudi Arabia)
Publication Date:
OSTI Identifier:
22415141
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 106; Journal Issue: 3; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ELECTRON MICROSCOPY; MAGNETIZATION; NANOWIRES; NICKEL; SIMULATION