skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Technical Note: Improvements in GEANT4 energy-loss model and the effect on low-energy electron transport in liquid water

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4921613· OSTI ID:22413606
 [1];  [2]
  1. Centre d’Etudes Nucléaires de Bordeaux-Gradignan, CENBG, Chemin du Solarium, Université de Bordeaux, Gradignan 33175, France and Centre d’Etudes Nucléaires de Bordeaux-Gradignan, CENBG, Chemin du Solarium, CNRS/IN2P3, Gradignan 33175 (France)
  2. Department of Physics, Faculty of Sciences, Saint Joseph University, Mkalles, Beirut (Lebanon)

Purpose: The GEANT4-DNA physics models are upgraded by a more accurate set of electron cross sections for ionization and excitation in liquid water. The impact of the new developments on low-energy electron transport simulations by the GEANT4 Monte Carlo toolkit is examined for improving its performance in dosimetry applications at the subcellular and nanometer level. Methods: The authors provide an algorithm for an improved implementation of the Emfietzoglou model dielectric response function of liquid water used in the GEANT4-DNA existing model. The algorithm redistributes the imaginary part of the dielectric function to ensure a physically motivated behavior at the binding energies, while retaining all the advantages of the original formulation, e.g., the analytic properties and the fulfillment of the f-sum-rule. In addition, refinements in the exchange and perturbation corrections to the Born approximation used in the GEANT4-DNA existing model are also made. Results: The new ionization and excitation cross sections are significantly different from those of the GEANT4-DNA existing model. In particular, excitations are strongly enhanced relative to ionizations, resulting in higher W-values and less diffusive dose-point-kernels at sub-keV electron energies. Conclusions: An improved energy-loss model for the excitation and ionization of liquid water by low-energy electrons has been implemented in GEANT4-DNA. The suspiciously low W-values and the unphysical long tail in the dose-point-kernel have been corrected owing to a different partitioning of the dielectric function.

OSTI ID:
22413606
Journal Information:
Medical Physics, Vol. 42, Issue 7; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English