skip to main content

Title: Computer aided detection of surgical retained foreign object for prevention

Purpose: Surgical retained foreign objects (RFOs) have significant morbidity and mortality. They are associated with approximately $1.5 × 10{sup 9} annually in preventable medical costs. The detection accuracy of radiographs for RFOs is a mediocre 59%. The authors address the RFO problem with two complementary technologies: a three-dimensional (3D) gossypiboma micro tag, the μTag that improves the visibility of RFOs on radiographs, and a computer aided detection (CAD) system that detects the μTag. It is desirable for the CAD system to operate in a high specificity mode in the operating room (OR) and function as a first reader for the surgeon. This allows for fast point of care results and seamless workflow integration. The CAD system can also operate in a high sensitivity mode as a second reader for the radiologist to ensure the highest possible detection accuracy. Methods: The 3D geometry of the μTag produces a similar two dimensional (2D) depiction on radiographs regardless of its orientation in the human body and ensures accurate detection by a radiologist and the CAD. The authors created a data set of 1800 cadaver images with the 3D μTag and other common man-made surgical objects positioned randomly. A total of 1061 cadaver imagesmore » contained a single μTag and the remaining 739 were without μTag. A radiologist marked the location of the μTag using an in-house developed graphical user interface. The data set was partitioned into three independent subsets: a training set, a validation set, and a test set, consisting of 540, 560, and 700 images, respectively. A CAD system with modules that included preprocessing μTag enhancement, labeling, segmentation, feature analysis, classification, and detection was developed. The CAD system was developed using the training and the validation sets. Results: On the training set, the CAD achieved 81.5% sensitivity with 0.014 false positives (FPs) per image in a high specificity mode for the surgeons in the OR and 96.1% sensitivity with 0.81 FPs per image in a high sensitivity mode for the radiologists. On the independent test set, the CAD achieved 79.5% sensitivity with 0.003 FPs per image in a high specificity mode for the surgeons and 90.2% sensitivity with 0.23 FPs per image in a high sensitivity mode for the radiologists. Conclusions: To the best of the authors’ knowledge, this is the first time a 3D μTag is used to produce a recognizable, substantially similar 2D projection on radiographs regardless of orientation in space. It is the first time a CAD system is used to search for man-made objects over anatomic background. The CAD system for the μTags achieved reasonable performance in both the high specificity and the high sensitivity modes.« less
; ; ;  [1] ; ;  [2]
  1. Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109 (United States)
  2. Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 3; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States