skip to main content

Title: Assessment of potential advantages of relevant ions for particle therapy: A model based study

Purpose: Different ion types offer different physical and biological advantages for therapeutic applications. The purpose of this work is to assess the advantages of the most commonly used ions in particle therapy, i.e., carbon ({sup 12}C), helium ({sup 4}He), and protons ({sup 1}H) for different treatment scenarios. Methods: A treatment planning analysis based on idealized target geometries was performed using the treatment planning software TRiP98. For the prediction of the relative biological effectiveness (RBE) that is required for biological optimization in treatment planning the local effect model (LEM IV) was used. To compare the three ion types, the peak-to-entrance ratio (PER) was determined for the physical dose (PER{sub PHY} {sub S}), the RBE (PER{sub RBE}), and the RBE-weighted dose (PER{sub BIO}) resulting for different dose-levels, field configurations, and tissue types. Further, the dose contribution to artificial organs at risk (OAR) was assessed and a comparison of the dose distribution for the different ion types was performed for a patient with chordoma of the skull base. Results: The study showed that the advantages of the ions depend on the physical and biological properties and the interplay of both. In the case of protons, the consideration of a variable RBE instead ofmore » the clinically applied generic RBE of 1.1 indicates an advantage in terms of an increased PER{sub RBE} for the analyzed configurations. Due to the fact that protons show a somewhat better PER{sub PHY} {sub S} compared to helium and carbon ions whereas helium shows a higher PER{sub RBE} compared to protons, both protons and helium ions show a similar RBE-weighted dose distribution. Carbon ions show the largest variation of the PER{sub RBE} with tissue type and a benefit for radioresistant tumor types due to their higher LET. Furthermore, in the case of a two-field irradiation, an additional gain in terms of PER{sub BIO} is observed when using an orthogonal field configuration for carbon ions as compared to opposing fields. In contrast, for protons, the PER{sub BIO} is almost independent on the field configuration. Concerning the artificial lateral OAR, the volume receiving 20% of the prescribed RBE-weighted dose (V20) was reduced by over 35% using helium ions and by over 40% using carbon ions compared to protons. The analysis of the patient plan showed that protons, helium, and carbon ions are similar in terms of target coverage whereas the dose to the surrounding tissue is increasing from carbon ions toward protons. The mean dose to the brain stem can be reduced by more than 55% when using helium ions and by further 25% when using carbon ions instead of protons. Conclusions: The comparison of the PER{sub RBE} and PER{sub PHY} {sub S} of the three ion types suggests a strong dependence of the advantages of the three ions on the dose-level, tissue type, and field configuration. In terms of conformity, i.e., dose to the normal tissue, a clear gain is expected using carbon or helium ions compared to protons.« less
Authors:
 [1] ;  [2] ;  [2] ; ; ;  [1] ;  [3] ;  [4] ;  [5]
  1. Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291 (Germany)
  2. (Germany)
  3. Institute of Medical Physics and Radiation Protection, University of Applied Sciences Gießen, Gießen 35390, Germany and Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg 35043 (Germany)
  4. Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291, Germany and Department of Condensed Matter Physics, Darmstadt University of Technology, Darmstadt 64289 (Germany)
  5. Medical Faculty of Philipps-University Marburg, Marburg 35032, Germany and Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg 35043 (Germany)
Publication Date:
OSTI Identifier:
22413411
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 2; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
63 RADIATION, THERMAL, AND OTHER ENVIRONMENTAL POLLUTANT EFFECTS ON LIVING ORGANISMS AND BIOLOGICAL MATERIALS; 60 APPLIED LIFE SCIENCES; CARBON 12; CARBON IONS; HELIUM IONS; HYDROGEN 1; LET; PROTONS; RADIATION DOSE DISTRIBUTIONS; RADIATION DOSES; RADIOTHERAPY; RBE