skip to main content

Title: Charge transport and recombination in P3HT:PbS solar cells

The charge carrier transport in thin film hybrid solar cells is analyzed and correlated with device performance and the mechanisms responsible for recombination loss. The hybrid bulk heterojunction consisted of a blend of poly(3-hexylthiophene) (P3HT) and small size (2.4 nm) PbS quantum dots (QDs). The charge transport in the P3HT:PbS blends was determined by measuring the space-charge limited current in hole-only and electron-only devices. When the loading of PbS QDs exceeds the percolation threshold, a significant increase of the electron mobility is observed in the blend with PbS QDs. The hole mobility, on the other hand, only slightly decreased upon increasing the loading of PbS QDs. We also showed that the photocurrent is limited by the low shunt resistance rather than by space-charge effects. The significant reduction of the fill factor at high light intensity suggests that under these conditions the non-geminate recombination dominates. However, at open-circuit conditions, the trap-assisted recombination dominates over non-geminate recombination.
Authors:
; ;  [1] ; ; ;  [2]
  1. Laboratory of Photochemistry and Spectroscopy, Division of Molecular Imaging and Photonics, Chemistry Department, KULeuven, Celestijnenlaan 200 F, B2404, 3001 Leuven (Belgium)
  2. Imec vzw, Kapeldreef 75, B-3001 Leuven (Belgium)
Publication Date:
OSTI Identifier:
22413231
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal Issue: 9; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CHARGE CARRIERS; CHARGE TRANSPORT; ELECTRON MOBILITY; ELECTRONS; FILL FACTORS; HETEROJUNCTIONS; HOLE MOBILITY; HOLES; LEAD SULFIDES; QUANTUM DOTS; RECOMBINATION; SOLAR CELLS; SPACE CHARGE; THIN FILMS; TRAPS; VISIBLE RADIATION