skip to main content

Title: Dynamic acoustic tractor beams

Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.
Authors:
 [1]
  1. Chevron, Area 52 Technology – ETC, Santa Fe, New Mexico 87508 (United States)
Publication Date:
OSTI Identifier:
22413225
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal Issue: 9; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ACOUSTICS; AMPLITUDES; EQUILIBRIUM; FLUIDS; HEXANE; MODULATION; SPHERES; TRANSDUCERS; WATER