skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Size dependence of the polarizability and Haynes rule for an exciton bound to an ionized donor in a single spherical quantum dot

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4907760· OSTI ID:22413101
 [1]; ;  [2];  [3];  [4]
  1. Université Mohamed V Souissi, Ecole Normale Supérieure de l'Enseignement Technique (ENSET), Rabat (Morocco)
  2. Laboratory of Condensed Matter, Faculty of Sciences and Techniques, University of Hassan II-Mohammedia, B.P. 146, 20800 Mohammedia (Morocco)
  3. LCP-A2MC, Université de Lorraine, ICPM, 1 Bd Arago, 57070 Metz (France)
  4. Laboratoire d'Électronique et Optique des Nanostructures de Semiconducteurs, Faculté des Sciences, B. P. 20, El Jadida (Morocco)

We study the effect of an external electric field on an exciton bound to an ionized donor (D{sup +}, X) confined in a spherical quantum dot using a perturbative-variational method where the wave function and energy are developed in series of powers of the electric field strength. After testing this new approach in the determination of the band gap for some semiconductor materials, we generalize it to the case of (D{sup +}, X) in the presence of the electric field and for several materials ZnO, PbSe, and InAs, with significant values of the mass ratio. Three interesting results can be deduced: First, we show that the present method allows to determine the ground state energy in the presence of a weak electric field in a simple way (E = E{sub 0} − αf{sup 2}) using the energy without electric field E{sub 0} and the polarizability α. The second point is that our theoretical predictions show that the polarizability of (D{sup +}, X) varies proportionally to R{sup 3.5} and follows an ordering α{sub D{sup 0}}<α{sub X}<α{sub (D{sup +},X)}. The last point to highlight is that the Haynes rule remains valid even in the presence of a weak electric field.

OSTI ID:
22413101
Journal Information:
Journal of Applied Physics, Vol. 117, Issue 6; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English