skip to main content

Title: Temperature dependence of exciton-surface plasmon polariton coupling in Ag, Au, and Al films on In{sub x}Ga{sub 1−x}N/GaN quantum wells studied with time-resolved cathodoluminescence

The optical properties and coupling of excitons to surface plasmon polaritons (SPPs) in Ag, Au, and Al-coated In{sub x}Ga{sub 1−x}N/GaN multiple and single quantum wells (SQWs) were probed with time-resolved cathodoluminescence. Excitons were generated in the metal coated SQWs by injecting a pulsed high-energy electron beam through the thin metal films. The Purcell enhancement factor (F{sub p}) was obtained by direct measurement of changes in the temperature-dependent radiative lifetime caused by the SQW exciton-SPP coupling. Three chosen plasmonic metals of Al, Ag, and Au facilitate an interesting comparison of the exciton-SPP coupling for energy ranges in which the SP energy is greater than, approximately equal to, and less than the excitonic transition energy for the InGaN/GaN QW emitter. A modeling of the temperature dependence of the Purcell enhancement factor, F{sub p}, included the effects of ohmic losses of the metals and changes in the dielectric properties due to the temperature dependence of (i) the intraband behavior in the Drude model and (ii) the interband critical point transition energies which involve the d-bands of Au and Ag. We show that an inclusion of both intraband and interband effects is essential when calculating the ω vs k SPP dispersion relation, plasmon densitymore » of states (DOS), and the dependence of F{sub p} on frequency and temperature. Moreover, the “back bending” in the SPP dispersion relation when including ohmic losses can cause a finite DOS above ω{sub sp} and lead to a measurable F{sub p} in a limited energy range above ω{sub sp}, which can potentially be exploited in plasmonic devices utilizing Ag and Au.« less
Authors:
;  [1] ; ;  [2]
  1. Department of Physics and The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B 653, Beer-Sheva 84105 (Israel)
  2. Electrical and Computer Engineering and Materials Departments, University of California, Santa Barbara, California 93111 (United States)
Publication Date:
OSTI Identifier:
22412983
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal Issue: 4; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; CATHODOLUMINESCENCE; COMPARATIVE EVALUATIONS; COMPUTERIZED SIMULATION; COUPLING; DENSITY OF STATES; DIELECTRIC PROPERTIES; DISPERSION RELATIONS; EXCITONS; FILMS; GALLIUM NITRIDES; GOLD; INDIUM COMPOUNDS; LIFETIME; OPTICAL PROPERTIES; PLASMONS; POLARONS; QUANTUM WELLS; SILVER; TEMPERATURE DEPENDENCE