skip to main content

Title: Flexible semi-around gate silicon nanowire tunnel transistors with a sub-kT/q switch

Tunnel field-effect transistors (TFETs) with a subthreshold swing (SS) < 60 mV/dec are expected to be active devices in low-power flexible systems, potentially lowering operational voltage by virtue of steep switching behavior via band-to-band tunneling. In silicon (Si) channel materials, however, it still remains a challenge to obtain SS smaller than 60 mV/dec. In this study, we experimentally demonstrate the sub-60 mV/dec operation of a flexible semi-around gate TFET on a plastic substrate using Si nanowires (SiNWs) as the channel material. With the combined advantages of selectively thinned SiNW channels (width ∼ 15 nm and height ∼ 40 nm) and high-κ (Al{sub 2}O{sub 3} ∼ 7 nm) gate dielectric, in conjunction with an abrupt degenerate source junction, the device with a channel length of ∼500 nm exhibits a minimal SS of ∼42 mV/dec at room temperature. Moreover, mechanical bendability of the device indicates that it has stable and good fatigue properties, providing an important step towards the realization of steep-slope switches for low-power and energy-efficient flexible electronics.
Authors:
; ; ;  [1]
  1. Department of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)
Publication Date:
OSTI Identifier:
22412927
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal Issue: 22; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ALUMINIUM OXIDES; DIELECTRIC MATERIALS; ELECTRIC CONTACTS; ELECTRIC POTENTIAL; FATIGUE; FIELD EFFECT TRANSISTORS; NANOWIRES; SILICON; SUBSTRATES; TEMPERATURE RANGE 0273-0400 K; TUNNEL EFFECT