skip to main content

Title: Direct measurements of irradiation-induced creep in micropillars of amorphous Cu{sub 56}Ti{sub 38}Ag{sub 6}, Zr{sub 52}Ni{sub 48}, Si, and SiO{sub 2}

We report in situ measurements of irradiation-induced creep on amorphous (a-) Cu{sub 56}Ti{sub 38}Ag{sub 6}, Zr{sub 52}Ni{sub 48}, Si, and SiO{sub 2}. Micropillars 1 μm in diameter and 2 μm in height were irradiated with ∼2 MeV heavy ions during uniaxial compression at room temperature. The creep measurements were performed using a custom mechanical testing apparatus utilizing a nanopositioner, a silicon beam transducer, and an interferometric laser displacement sensor. We observed Newtonian flow in all tested materials. For a-Cu{sub 56}Ti{sub 38}Ag{sub 6}, a-Zr{sub 52}Ni{sub 48}, a-Si, and Kr{sup +} irradiated a-SiO{sub 2} irradiation-induced fluidities were found to be nearly the same, ≈3 GPa{sup −1} dpa{sup −1}, whereas for Ne{sup +} irradiated a-SiO{sub 2} the fluidity was much higher, 83 GPa{sup −1} dpa{sup −1}. A fluidity of 3 GPa{sup −1} dpa{sup −1} can be explained by point-defect mediated plastic flow induced by nuclear collisions. The fluidity of a-SiO{sub 2} can also be explained by this model when nuclear stopping dominates the energy loss, but when the electronic stopping exceeds 1 keV/nm, stress relaxation in thermal spikes also contributes to the fluidity.
Authors:
;  [1] ;  [2] ;  [1] ;  [3]
  1. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)
  2. Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)
  3. (United States)
Publication Date:
OSTI Identifier:
22412833
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal Issue: 2; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ATOMIC DISPLACEMENTS; COMPRESSION; COPPER ALLOYS; CREEP; IRRADIATION; NICKEL ALLOYS; PHYSICAL RADIATION EFFECTS; POINT DEFECTS; PRESSURE RANGE GIGA PA; SENSORS; SILICON; SILICON OXIDES; SILVER ALLOYS; STRESS RELAXATION; TEMPERATURE RANGE 0273-0400 K; THERMAL SPIKES; TITANIUM ALLOYS; TRANSDUCERS; ZIRCONIUM ALLOYS