skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural, magnetic, and dielectric studies of the Aurivillius compounds SrBi{sub 5}Ti{sub 4}MnO{sub 18} and SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18}

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4905848· OSTI ID:22412822
; ; ; ; ;  [1];  [1]
  1. Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

We have successfully synthesized the Aurivillius compounds SrBi{sub 5}Ti{sub 4}MnO{sub 18} and SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} using a modified Pechini method. Both samples have an orthorhombic structure with the space group B2cb. The valence state of Mn is suggested to be +3 and the doped Co ions exist in the form of Co{sup 2+} and Co{sup 3+} based on the results of x-ray photoelectron spectroscopy. The sample SrBi{sub 5}Ti{sub 4}MnO{sub 18} exhibits a dominant paramagnetic state with the existence of superparamagnetic state as evidenced by the electron paramagnetic resonance results, whereas SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} undergoes a ferrimagnetic transition at 161 K originating from the antiferromagnetic coupling of Co-based and Mn-based sublattices, and a ferromagnetic transition at 45 K arising from the Mn{sup 3+}-O-Co{sup 3+} (low spin) interaction. The sample SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} exhibits two dielectric anomalies. One corresponds to a relaxor-like dielectric relaxation which follows the Vogel-Fulcher function and the other dielectric relaxation obeys the Arrhenius law arising from the collective motion of oxygen vacancies. In addition, the sample SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} exhibits a magnetodielectric effect caused by the Maxwell-Wagner effect because of the conductivity of the sample. This is demonstrated by the fact that the activation energy in dielectric loss process is close to that for dc conductivity and the magnetodielectric effect is sensitive to the measured frequency.

OSTI ID:
22412822
Journal Information:
Journal of Applied Physics, Vol. 117, Issue 2; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English